33 research outputs found

    Horizontal subduction zones, convergence velocity and the building of the Andes

    Full text link
    We discuss the relationships between Andean shortening, plate velocities at the trench, and slab geometry beneath South America. Although some correlation exists between the convergence velocity and the westward motion of South America on the one hand, and the shortening of the continental plate on the other hand, plate kinematics neither gives a satisfactory explanation to the Andean segmentation in general, nor explains the development of the Bolivian orocline in Paleogene times. We discuss the Cenozoic history of horizontal slab segments below South America, arguing that they result from the subduction of oceanic plateaus whose effect is to switch the buoyancy of the young subducting plate to positive. We argue that the existence of horizontal slab segments, below the Central Andes during Eocene-Oligocene times, and below Peru and North-Central Chile since Pliocene, resulted (1) in the shortening of the continental plate interiors at a large distance from the trench, (2) in stronger interplate coupling and ultimately, (3) in a decrease of the trenchward velocity of the oceanic plate. Present-day horizontal slab segments may thus explain the diminution of the convergence velocity between the Nazca and South American plates since Late Miocene

    Uplift of Quaternary shorelines in Eastern Patagonia : Darwin revisited

    Get PDF
    International audienceDuring his journey on the Beagle, Darwin observed the uniformity in the elevation of coastal Eastern Patagonia along more than 2000 km. More than one century later, the sequences of Quaternary shorelines of eastern Patagonia have been described and their deposits dated but not yet interpreted in terms of geodynamics. Consequently, we i) mapped the repartition of the Quaternary coastal sequences in Argentinean Patagonia, ii) secured accurate altitudes of shoreline angles associated with erosional morphologies (i.e. marine terraces and notches), iii) took into account previous chrono-stratigraphical interpretations in order to calculate mean uplift rates since ~440 ka (MIS 11) and proposed age ranges for the higher and older features (up to ~180 m), and iv) focused on the Last Interglacial Maximum terrace (MIS 5e) as the best constrained marine terrace (in terms of age and altitude) in order to use it as a tectonic benchmark to quantify uplift rates along the entire passive margin of Eastern South America. Our results show that the eastern Patagonia uplift is constant through time and twice the uplift of the rest of the South American margin. We suggest that the enhanced uplift along the eastern Patagonian coast that interested Darwin during his journey around South America on the Beagle could originate from the subduction of the Chile ridge and the associated dynamic uplift

    Enhanced Multicarrier Techniques for Professional Ad-Hoc and Cell-Based Communications (EMPhAtiC) Document Number D3.3 Reduction of PAPR and non linearities effects

    Get PDF
    Livrable d'un projet Européen EMPHATICLike other multicarrier modulation techniques, FBMC suffers from high peak-to-average power ratio (PAPR), impacting its performance in the presence of a nonlinear high power amplifier (HPA) in two ways. The first impact is an in-band distortion affecting the error rate performance of the link. The second impact is an out-of-band effect appearing as power spectral density (PSD) regrowth, making the coexistence between FBMC based broad-band Professional Mobile Radio (PMR) systems with existing narrowband systems difficult to achieve. This report addresses first the theoretical analysis of in-band HPA distortions in terms of Bit Error Rate. Also, the out-of band impact of HPA nonlinearities is studied in terms of PSD regrowth prediction. Furthermore, the problem of PAPR reduction is addressed along with some HPA linearization techniques and nonlinearity compensation approaches

    Episodic slab rollback fosters exhumation of HP-UHP rocks

    Get PDF
    International audienceThe burial-exhumation cycle of crustal material in subduction zones can either be driven by the buoyancy of the material, by the surrounding flow, or by both. High pressure and ultrahigh pressure rocks are chiefly exhumed where subduction zones display transient behaviours, which lead to contrasted flow regimes in the subduction mantle wedge. Subduction zones with stationary trenches (mode I) favour the burial of rock units, whereas slab rollback (mode II) moderately induces an upward flow that contributes to the exhumation, a regime that is reinforced when slab dip decreases (mode III). Episodic regimes of subduction that involve different lithospheric units successively activate all three modes and thus greatly favour the exhumation of rock units from mantle depth to the surface without need for fast and sustained erosion

    Back arc extension and collision : an experimental approach of the tectonics of Asia

    Get PDF
    International audienceThe deformation of the eastern Asian lithosphere during the first part of the India-Asia collision was dominated by subduction-related extension interacting with far effects of the collision. In order to investigate the role of large-scale extension in collision tectonics, we performed analogue experiments of indentation with a model of lithosphere subjected to extension. We used a three-layer rheological model of continental lithosphere resting upon an asthenosphere of low viscosity and strained along its southern boundary by a rigid indenter progressing northward. The lithosphere model was scaled to be gravitationally unstable and to spread under its ownweight, so that extension occurred in thewhole model. The eastern boundarywas free or weakly confined and always allowed eastward spreading of the model. We studied the pattern of deformation for different boundary conditions. The experimental pattern of deformation includes a thickened zone in front of the indenter, a major northeast-trending left-lateral shear zone starting from the northwest corner of the indenter, antithetic north-south right-lateral shear zones more or less developed to the east of the indenter, and a purely extensional domain in the southeastern part of the model. In this domain, graben opening is driven by gravitational spreading, whereas it is driven by gravitational spreading and indentation in the northeastern part where grabens opened along strike-slip faults. The results are compared with the Oligo- Miocene deformation pattern of Asia consecutive to the collision of India. Our experiments bring a physical basis to models which favour distributed deformation within a slowly extruded wide region extending from the Baikal Rift to the Okhotsk Sea and to southeast Asia and Indonesia. In this large domain, the opening of backarc basins (Japan Sea, Okinawa Trough, South China Sea) and continental grabens (North China grabens) have been associated with approximately north-south-trending right-lateral strike-slip faults, which accommodated the northward penetration of India into Eurasia

    L'élargissement des Andes: une interaction entre dynamique de subduction et croissance de prismes d'accrétion crustaux

    No full text
    International audienceShortening of the continental lithosphere is generally accommodated by the growth of crustal wedges building above megathrusts in the mantle lithosphere. We show that the locus of shortening in the western margin of South America has largely been controlled by the geometry of the slab. Numerical models confirm that horizontal subduction favors compression far from the trench, above the asthenospheric wedge and steeply dipping segment of the subducting slab. As a result, a second crustal wedge grows in the hinterland of the continent, and widens the Andes. In the Bolivian orocline, this wedge corresponds to the Eastern Cordillera, whose growth was triggered by a major episode of horizontal subduction. When the slab returned to a steeper dip angle, shortening and uplift pursued, facilitated by the structural and thermo-chemical alteration of the continental lithosphere. We review the successive episodes of horizontal subduction that have occurred beneath South America at different latitudes and show that they explain the diachronic widening of the Andes. We infer that the present-day segmented physiography of the Andes results from the latitudinally variable, transient interplay between slab dynamics and upper plate tectonics over the Cenozoic. We emphasize that slab flattening, or absence thereof, is a major driving mechanism that sets the width of the Andes, at any latitude.Les modèles mécaniques de déformation de la lithosphère montrent que le raccourcissement d'une plaque continentale est généralement accommodé par des prismes d'accrétion crustaux qui croissent au dessus de méga-chevauchements recoupant le manteau lithosphérique. Nous montrons que la localisation du raccourcissement sur la bordure ouest du continent sud-américain est fortement contrôlée par la géométrie de la plaque plongeante. En effet, nous présentons des modèles numériques qui confirment que les subductions horizontales entrainent une migration de la zone de raccourcissement loin de la fosse de subduction. Il en résulte l'apparition d'un second prisme d'accrétion crustal qui se développe à l'intérieur du continent, et dont la croissance entraine l'élargissement de la chaîne andine. Dans l'orocline bolivien, ce second prisme correspond à la Cordillère orientale. Sa croissance est due à un épisode de subduction horizontale survenu au cours du Paléogène. Lorsque le pendage de la plaque plongeante redevient incliné, le raccourcissement et le soulèvement de la chaîne se poursuivent, facilités par les changements thermiques et rhéologiques que subit alors la plaque continentale. Nous passons en revue les épisodes de subduction horizontale survenus sous les Andes au cours du Tertiaire, à différentes latitudes, et montrons qu'ils expliquent l'élargissement diachrone de la chaîne. Nous concluons que l'aspect contrasté actuel de la morphologie de la Cordillère des Andes est le résultat des interactions entre la dynamique de la subduction et la tectonique continentale au cours du Tertiaire. L'apparition ou l'absence de segments de subductions horizontales est un mécanisme essentiel qui explique la largeur actuelle de la chaîne, à toutes les latitudes
    corecore